
ibaPDA-Interface-Modbus-TCP-Server
Data Interface Modbus-TCP-Server

Manual
Issue 3.0

Measurement Systems for Industry and Energy
www.iba-ag.com

2

Manufacturer

iba AG

Koenigswarterstrasse 44

90762 Fuerth

Germany

Contacts

Main office +49 911 97282-0

Fax +49 911 97282-33

Support +49 911 97282-14

Engineering +49 911 97282-13

E-mail iba@iba-ag.com

Web www.iba-ag.com

Unless explicitly stated to the contrary, it is not permitted to pass on or copy this document, nor
to make use of its contents or disclose its contents. Infringements are liable for compensation.

© iba AG 2023, All rights reserved.

The content of this publication has been checked for compliance with the described hardware
and software. Nevertheless, discrepancies cannot be ruled out, and we do not provide guaran-
tee for complete conformity. However, the information furnished in this publication is updated
regularly. Required corrections are contained in the following regulations or can be downloaded
on the Internet.

The current version is available for download on our web site www.iba-ag.com.

Version Date Revision Author Version SW

3.0 10-2023 New version ibaPDA v8 RM/IP 8.4.0

Windows® is a brand and registered trademark of Microsoft Corporation. Other product and
company names mentioned in this manual can be labels or registered trademarks of the corre-
sponding owners.

3	 3.0	 3

ibaPDA-Interface-Modbus-TCP-Server	 Contents

Contents

1	 About this documentation...5

1.1	 Target group and previous knowledge.. 5

1.2	 Notations... 5

1.3	 Used symbols... 6

2	 System requirements...7

3	 Modbus-TCP-Server data interface...8

3.1	 General information..8

3.1.1	 Modbus TCP/IP.. 8

3.1.2	 Client/Server architecture... 9

3.1.3	 Modbus protocol...9

3.1.4	 Modbus TCP/IP - Message layout.. 12

3.1.4.1	 Modbus Integer and Modbus Dig512... 12

3.1.4.2	 Modbus Real...13

3.1.4.3	 Modbus Generic...13

3.1.4.4	 Response.. 14

3.1.5	 References... 14

3.2	 Configuration and engineering ibaPDA... 15

3.2.1	 General settings...15

3.2.2	 General interface settings.. 16

3.2.3	 Adding a module...17

3.2.3.1	 General module settings... 18

3.2.3.2	 General signal configuration... 18

3.2.3.3	 Module type "Integer".. 19

3.2.3.4	 Module type "Dig512".. 19

3.2.3.5	 Module type "Real"..20

3.2.3.6	 Module type "Generic"... 20

3.2.4	 Module diagnostics...21

4	 Diagnostics...22

4.1	 License... 22

4.2	 Visibility of the interface.. 22

4.3	 Log files.. 23

4.4	 Connection diagnostics with PING... 24

4	 3.0	

Contents	 ibaPDA-Interface-Modbus-TCP-Server

4.5	 Checking the connection... 25

4.6	 Diagnostic modules...27

5	 Appendix...32

5.1	 Troubleshooting...32

5.1.1	 TCP performance problems caused by Delayed Acknowledge................................32

5.1.2	 TCP data corruption resulting from the Nagle’s Algorithm......................................34

5.2	 Engineering examples..36

5.2.1	 Engineering example Modicon Quantum.. 36

5.2.1.1	 Configuration of the TCP/IP Interface in ProWORX NxT.......................................36

5.2.1.2	 Ladder Program for the PLC.. 38

5.2.1.3	 ConCept Program for the PLC... 40

5.2.1.4	 Unity Pro XL Program for the PLC (Generic module sample)................................42

5.2.2	 Engineering example in PL7 Pro.. 44

5.2.2.1	 Network configuration.. 44

5.2.2.2	 Message configuration (example).. 45

6	 Support and contact...47

5	 3.0	 5

ibaPDA-Interface-Modbus-TCP-Server	 About this documentation

1	 About this documentation
This documentation describes the function and application of the software interface

ibaPDA-Interface-Modbus-TCP-Server.

This documentation is a supplement to the ibaPDA manual. Information about all the other
characteristics and functions of ibaPDA can be found in the ibaPDA manual or in the online help.

1.1	 Target group and previous knowledge
This documentation is aimed at qualified professionals who are familiar with handling electrical
and electronic modules as well as communication and measurement technology. A person is
regarded as professional if he/she is capable of assessing safety and recognizing possible con-
sequences and risks on the basis of his/her specialist training, knowledge and experience and
knowledge of the standard regulations.

This documentation in particular addresses persons, who are concerned with the configuration,
test, commissioning or maintenance of Programmable Logic Controllers of the supported prod-
ucts. For the handling ibaPDA-Interface-Modbus-TCP-Server the following basic knowledge is
required and/or useful:

■	 Windows operating system

■	 Basic knowledge of ibaPDA

■	 Knowledge of configuration and operation of the relevant measuring device/system

1.2	 Notations
In this manual, the following notations are used:

Action Notation
Menu command Menu Logic diagram
Calling the menu command Step 1 – Step 2 – Step 3 – Step x

Example:
Select the menu Logic diagram – Add – New function
block.

Keys <Key name>

Example: <Alt>; <F1>
Press the keys simultaneously <Key name> + <Key name>

Example: <Alt> + <Ctrl>
Buttons <Key name>

Example: <OK>; <Cancel>
Filenames, paths Filename, Path

Example: Test.docx

6	 3.0	

About this documentation	 ibaPDA-Interface-Modbus-TCP-Server

1.3	 Used symbols
If safety instructions or other notes are used in this manual, they mean:

Danger!

The non-observance of this safety information may result in an imminent risk
of death or severe injury:

■	 Observe the specified measures.

Warning!

The non-observance of this safety information may result in a potential risk of
death or severe injury!

■	 Observe the specified measures.

Caution!

The non-observance of this safety information may result in a potential risk of
injury or material damage!

■	 Observe the specified measures

Note

A note specifies special requirements or actions to be observed.

Tip

Tip or example as a helpful note or insider tip to make the work a little bit easier.

Other documentation

Reference to additional documentation or further reading.

7	 3.0	 7

ibaPDA-Interface-Modbus-TCP-Server	 System requirements

2	 System requirements
The following system requirements are necessary for the use of the Modbus-TCP-Server data
interface:

■	 ibaPDA v8.0.0 or higher

■	 License for ibaPDA-Interface-Modbus-TCP-Server

■	 Network connection 10/100 Mbits

For further requirements for the used computer hardware and the supported operating sys-
tems, refer to the ibaPDA documentation.

Note

It is recommended carrying out the TCP/IP communication on a separate net-
work segment to exclude a mutual influence by other network components.

System restrictions

■	 The maximum length of a Modbus TCP/IP message is limited to 244 bytes.

■	 For different ways of handling the TCP/IP acknowledge, see ì TCP performance problems
caused by Delayed Acknowledge, page 32

Licenses

Order No. Product name Description
31.001020 ibaPDA-Interface-Modbus-TCP-

Server
Extension license for an ibaPDA system
providing an additional Modbus-TCP-Serv-
er interface.
Number of connections: 64

31.101020 one-step-up-Interface-Modbus
over TCPIP-Client

Extension license for the extension
of an existing interface by another 64
Modbus-TCP-Server connections, max. 3
permitted

88	 3.0	

Modbus-TCP-Server data interface	 ibaPDA-Interface-Modbus-TCP-Server

3	 Modbus-TCP-Server data interface

3.1	 General information

3.1.1	 Modbus TCP/IP

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet protocol
suite.

IP handles lower-level transmissions from computer to computer as a message makes its way
across the Internet. TCP operates at a higher level (transport level), concerned with the two end
systems. TCP provides a reliable data stream of bytes from a program on one computer to an-
other program on another computer. TCP is explained in chapter 6 of RFC1180 and in RFC768,
see ì References, page 14.

Modbus is a protocol for the client/server communication between devices connected on differ-
ent types of buses or networks.

Modbus is currently implemented in the following buses or networks as shown in the following
figure:

	� TCP/IP over Ethernet

	� Asynchronous serial transmission over a variety of media

	�Modbus PLUS (a high speed communication via a token passing network)

ibaPDA has the possibility to measure signals via the Modbus protocol over serial connections
(Modbus ASCII and Modbus RTU) and over TCP/IP. This manual describes the connection via
TCP/IP and as variant the transmission of the Modbus RTU protocol over TCP/IP, with ibaPDA
acting as client.

All systems that can receive and respond to messages with the Modbus-TCP protocol as server,
can also communicate with ibaPDA.

	 3.0	 9

ibaPDA-Interface-Modbus-TCP-Server	 Modbus-TCP-Server data interface

3.1.2	 Client/Server architecture

The Modbus service supports a client/server communication for devices which are connected
via Ethernet TCP/IP.

The client/server model is based on 4 message types:

■	 Request

■	 Indication

■	 Response

■	 Confirmation

Read data: The Modbus-TCP-Client (ibaPDA) establishes the connection to the Modbus server,
sends periodically the request and waits for the response, which contains the requested data.

Write data: The Modbus-TCP-Client (ibaPDA) establishes the connection to the Modbus server
which contains the output data and waits for the response.

The port 502 is used for the Modbus TCP/IP communication by default, however you have got
the possibility to enter other port numbers in ibaPDA.

With a ibaPDA-Interface-Modbus-TCP-Server license, ibaPDA can receive up to 64 connections,
i.e. up to 64 Modbus servers can establish connections to ibaPDA. The number can be extended
to a max. of 256 by loading the license more than once.

3.1.3	 Modbus protocol

Byte sequence
Modbus uses "BIG ENDIAN", i.e. in the messages the bytes with a high significance are sent first
and are thus stored in the addresses of low significance.

ibaPDA swaps all received 16- and 32-bit-values to the Intel format "LITTLE ENDIAN" ("Swap-
ping"). You can select the Swapping method in ibaPDA for data that do not come from a Mod-
bus controller. See ì General interface settings, page 16.

Modbus RTU / Modbus TCP
In the following representation, you can see the basic structure of the Modbus protocol and the
differences between Modbus RTU and Modbus TCP.

10	 3.0	

Modbus-TCP-Server data interface	 ibaPDA-Interface-Modbus-TCP-Server

RTU Remote Terminal Unit

MBAP Modbus Application Protocol

ADU Application Data Unit

PDU Protocol Data Unit

For Modbus TCP, the MBAP Header is put in front of the function code. The Unit Id. corresponds
to the Slave Id. of the RTU protocol. The CRC code is omitted.

MBAP Header
The MBAP Header is a dedicated header used for the communication with TCP/IP to identify the
Modbus Application Data.

The header contains the following fields:

Fields Bytes Description
Transaction Id. 2 Identification of Modbus request/response transaction
Protocol Id. 2 0 = Modbus protocol
Length 2 Number of following bytes
Unit Id. 1 Addressing a remote slave connected to the Modbus server

■	 Transaction Identifier: It is used for transaction pairing.
The Modbus client sends it in the request; the Modbus server copies in the response mes-
sage the transaction identifier of the request.
 ibaPDA evaluates this field as sequence count and waits for the value to be incremented by
1 in each cycle. In the event of an overflow, the counter must jump from 32767 to -32768
(0x7FFF → 0x8000) or from 65535 to 0 (0xFFFF → 0x0000).

■	 Protocol Identifier:
It is used in multiplexing procedures.The Modbus protocol has the value 0.

■	 Length
The length field is a count of the following bytes, including the Unit Identifier, Function Code
and Data Fields. The maximum value is 251 (max. length of the user data bytes 244 + 7).

	 3.0	 11

ibaPDA-Interface-Modbus-TCP-Server	 Modbus-TCP-Server data interface

■	 Unit Identifier (device address):
This field is sent by the Modbus client in the request and must be returned with the same
value in the response by the server.
This field is not evaluated by ibaPDA.

Function code:
One byte contains the function code that determines which function the server has to carry out
depending on the request.

The ibaPDA-Interface-Modbus-TCP-Server driver supports only the function

	� 0x10: Write Multiple Registers

Data fields
The user data fields contain several subfields like starting address, number of registers, number
of bytes and the actual data. The content of these fields depends on the used function code. For
the function code 0x10, the data fields contain the following values:

Fields Bytes Description
Starting address 2 Starting address of the used storage area
Number of objects 2 Number of used registers or coils
Number of bytes 1 Number of data
Data range n n data bytes

■	 Starting address
The ibaPDA-Interface-Modbus-TCP-Server driver uses the Modbus starting address. The
starting address, that is called "Module index" in ibaPDA, is a number in which the data are
assigned to a data module.

In ibaPDA, 4 module types are defined:

	� Integer: 32 analog values (integer) and 32 binary signals

	� Real: 32 analog values (real) and 32 binary signals

	� Generic: data structure with a maximum length of 244 bytes.

	� Dig512: 512 Binary signals (32 status words with 16 bits, each)

The module index is created by a serial number 00....63 and an offset that corresponds to the
module type and the license.

Module type 1st License 2nd License 3rd License 4th License
Integer and Dig512 0-63 1000-1063 2000-2063 3000-3063
Real 100-163 1100-1163 2100-2163 3100-3163
Generic 200-263 1200-1263 2200-2263 3200-3263

The module index complies with the index in the ibaPDA module settings. This value must be
unique and must not be changed during data transmission.

12	 3.0	

Modbus-TCP-Server data interface	 ibaPDA-Interface-Modbus-TCP-Server

■	 Number of objects: This filed shows the number of registers that are transmitted in one
message. Modbus Integer and Modbus Dig512 send 34 registers. A Modbus Real module
sends 66 registers. In the Generic module, the number of registers can be varied. However, it
is limited to a max of 122. In this case, you have to enter the number of registers that are to
be sent.

■	 Number of bytes: This value is always the number of registers multiplied by 2, as the registers
are word-based (2 bytes). The maximum number is 244.

■	 Data range: The field contains the actual data sent to ibaPDA. The data type depends on the
used Modbus module. Each module type has a maximum number of values that can be sent.
An exception is the Generic module. In the Generic module, all available data types can be
used simultaneously. In ibaPDA, you only have to configure the address of the signal and the
data type.

3.1.4	 Modbus TCP/IP - Message layout

The Modbus messages have the following module layout, corresponding to the module type:

3.1.4.1	 Modbus Integer and Modbus Dig512

For the Integer module type, the 32 analog values are of the Integer type (16-bit) and the 32
digital values are densely packed as DWORD.

For the Dig512 module type, the 32 analog values are evaluated as 16-bit status words. The
DWORD is not used.

Request Modbus Client -> ibaPDA (Modbus Server):

Offs Bytes Type Modbus
Description

Contents
(hex)

Remark:

00 2 UINT Transaction Id. xx xx Is evaluated as sequence
count by ibaPDA,
i.e. the ID has to be incre-
mented each cycle.

MBAP 02 2 UINT Protocol Id. 00 00 0
04 2 UINT Cmd Length 4B 75
06 1 Bytes Unit-ID xx not used

Fcode 07 1 Bytes Function Code 10 "Write Multiple Registers"
Data 08 2 UINT Starting Ad-

dress
xx xx Module index i000 – i063

10 2 UINT Number of ob-
jects

22 34 number of registers

12 1 Bytes Number of
bytes

44 68 Number of bytes

User
data

13 64 INT Data xx 32 analog values
77 4 DWORD Data xx 32 digital values

	 3.0	 13

ibaPDA-Interface-Modbus-TCP-Server	 Modbus-TCP-Server data interface

3.1.4.2	 Modbus Real

The analog values are of the FLOAT (IEEE format) type and the 32 digital values are densely
packed as DWORD.

Request Modbus Client -> ibaPDA (Modbus Server):

Offs Bytes Type Modbus
Description

Contents
(hex)

Remark:

MBAP 00 2 UINT Transaction Id. xx xx Is evaluated by the ibaPDA
sequence count

02 2 UINT Protocol Id. 00 00 0
04 2 UINT Cmd Length 8B 139
06 1 Bytes Unit-ID xx not used

Fcode 07 1 Bytes Function Code 10 "Write Multiple Registers"
Data 08 2 UINT Starting Ad-

dress
xx xx Module index i100 to i163

10 2 UINT Number of ob-
jects

42 66 number of registers

12 1 Bytes Number of
bytes

84 132 Number of bytes

User
data

13 128 FLOAT Data xx 32 analog values
141 4 DWORD Data xx 32 digital values

3.1.4.3	 Modbus Generic

The user data area can have any desired data structure with different data formats. ibaPDA sup-
ports the following data formats:

BYTE, WORD, DWORD, INT, DINT and FLOAT.

The data structure defined here has to be modeled in ibaPDA. The BYTE, WORD and DWORD
variables may also be interpreted as 8, 16 or 32 single bits (and vice versa).

Request Modbus Client -> ibaPDA (Modbus Server):

Offs Bytes Type Modbus
Description

Contents
(hex)

Remark:

MBAP 00 2 UINT Transaction Id. xx xx Is evaluated by the ibaPDA
sequence count

02 2 UINT Protocol Id. 00 00 0
04 2 UINT Cmd Length xx n + 7
06 1 Bytes Unit-ID xx not used

Fcode 07 1 Bytes Function Code 10 "Write Multiple Registers"

14	 3.0	

Modbus-TCP-Server data interface	 ibaPDA-Interface-Modbus-TCP-Server

Offs Bytes Type Modbus
Description

Contents
(hex)

Remark:

Data 08 2 UINT Starting Ad-
dress

xx xx Module index i200 to i263

10 2 UINT Number of ob-
jects

42 n/2: rounded up

12 1 Bytes Number of
bytes

84 n (max. 122)

User
data

13 nn nnnn Data xx Arbitrary data structure
(max. 244 bytes)

3.1.4.4	 Response

Each telegram is answered by the Modbus server with a response telegram by default. You can
suppress this function in ibaPDA.

Response ibaPDA (Modbus Server) → Modbus Client:

Offs Bytes Type Modbus
Description

Content
 (hex)

ibaPDA
Description

MBAP 00 2 UINT Transaction Id. xx xx Sequence count,
Mirror of request

02 2 UINT Protocol Id. 00 00 0
04 2 UINT Cmd Length 00 06 6
06 1 Bytes Unit-ID xx Mirror of request

Fcode 07 1 Bytes Function Code 10 Mirror of request
Data 08 2 UINT Starting Address xx Mirror of request

10 2 UINT Number of ob-
jects

xx Mirror of request

3.1.5	 References

Other documentation

■	 ibaPDA manual

■	 A TCP/IP tutorial, RFC1180 (ftp://ftp.ripe.net/rfc/rfc1180.txt)

■	 Transmission Control Protocol, RFC793 (ftp://ftp.ripe.net/rfc/rfc793.txt)

■	 Modbus Messaging Implementation Guide V1 (http://www.modbus.org)

■	 Modbus Application Protocol V1.1 (http://www.modbus.org)

■	 Modbus Protocol Reference Guide Rev J, Modicon

	 3.0	 15

ibaPDA-Interface-Modbus-TCP-Server	 Modbus-TCP-Server data interface

3.2	 Configuration and engineering ibaPDA
The engineering for ibaPDA is described in the following. If all system requirements are fulfilled,
ibaPDA displays the Modbus TCP Server interface in the interface tree of the I/O Manager.

3.2.1	 General settings

The "Alive timeout" is configured jointly for all TCP/IP and UDP protocols supported by ibaPDA.

Disconnect connection after … seconds of inactivity
Behavior and timeout duration can be specified.

Set signal values to zero when a connection is lost
If this option is disabled, the value read last will be kept.

Write connection events in Windows event log
Current events are logged in Windows.

Automatically open necessary ports in Windows firewall
If this option is enabled, all ports required for the currently licensed interfaces are automatically
opened in the firewall by the ibaPDA server service.

If this option is disabled, the required ports can be opened manually in the I/O Manager of the
licensed interfaces via <Allow port through firewall>.

Interfaces for which packets must be acknowledged immediately
Selection of required interfaces.

Note

In case ibaPDA is the active partner (Client), ibaPDA reestablishes the connection
after only a few seconds. Thus, it gives to the passive partner the possibility to
send data again.

16	 3.0	

Modbus-TCP-Server data interface	 ibaPDA-Interface-Modbus-TCP-Server

3.2.2	 General interface settings

The interface provides the following functions and configuration options:

Use network byte order on network (= big endian, default setting)
Optional:

Use little endian byte order on network
see ì Modbus protocol, page 9.

Swap float values on word base
Here, you can change the byte order for data that are not provided by Modbus devices. The
bytes are swapped according to the pattern ABCD → CDAB. This option concerns only the mod-
ule type Real; for the module type Generic, specific setting options are defined.

Swap digital signals
Here, you can change the byte order for data that are not provided by Modbus devices. The
bytes are swapped according to the pattern ABCD → BADC.

Send response to modbus master
Each telegram is acknowledged by a response telegram, see ì Response, page 14. You can
suppress the response by de-activating this option.

Ignore sequence counter
If this option is enabled, the "Sequence errors" column is hidden in the connection overview.

Allow ports through firewall
When installing ibaPDA, the default port numbers of the used protocols are automatically en-
tered in the firewall. If you change the port number or enable the interface subsequently, you
have to enable this port in the firewall with this button.

<Reset statistics>
Click this button to reset the calculated times and error counters in the table to 0.

Overview of connections:
As soon as the connection has been established, you can see the live data in the overview. See
ì Checking the connection, page 25.

	 3.0	 17

ibaPDA-Interface-Modbus-TCP-Server	 Modbus-TCP-Server data interface

3.2.3	 Adding a module

Procedure
1.	 Click on the blue command Click to add module… located under each data interface in the

Inputs or Outputs tab.

2.	 Select the desired module type in the dialog box and assign a name via the input field if re-
quired.

3.	 Confirm the selection with <OK>.

Tip

If a TCP/IP connection already exists, right-click the interface and select "Auto-
detect". Then, the correct modules are automatically created for all available
connections.

Module types
The following modules types are available:

■	 Generic

■	 Dig512

■	 Integer

■	 Real

For further information, refer to the respective chapters under ì General information,
page 8 and ì Configuration and engineering ibaPDA, page 15

18	 3.0	

Modbus-TCP-Server data interface	 ibaPDA-Interface-Modbus-TCP-Server

3.2.3.1	 General module settings

To configure a module, select it in the tree structure.

All modules have the following setting options.

Basic settings

Module Type (information only)
Indicates the type of the current module.

Locked
You can lock a module to avoid unintentional or unauthorized changing of the module settings.

Enabled
Enable the module to record signals.

Name
You can enter a name for the module here.

Module No.
This internal reference number of the module determines the order of the modules in the signal
tree of ibaPDA client and ibaAnalyzer.

Timebase
All signals of the module are sampled on this timebase.

Use name as prefix
This option puts the module name in front of the signal names.

TCP/IP

Module index:
The module indices are created by a serial number 00....63 and an offset that corresponds to
the module type and the license. ì Modbus protocol, page 9

For a detailed description of the parameters, see the ibaPDA manual.

3.2.3.2	 General signal configuration

The data to be measured are selected on the Modbus client side by mapping the signals to the
respective data ranges.

	 3.0	 19

ibaPDA-Interface-Modbus-TCP-Server	 Modbus-TCP-Server data interface

Analog and digital tab

You can assign name, unit, scale factor and comments to the signals. Moreover, you can enable
or disable the signals.

Other documentation

For a description of the columns, please see the ibaPDA manual.

Note

The module TDC TCP/UDP Generic supports the acquisition and processing of
strings as text signals. Therefore, you can select the datatype STRING[32] in the
Analog tab. In order to convert a text signal oder to split it up into several text
signals use the text splitter module under the Virtual interface.

Tip

You can use the automatic fill function in the columns (see ibaPDA manual).

3.2.3.3	 Module type "Integer"

The "Integer" module allows up to 32 analog signals (Integer) and 32 binary signals to be ac-
quired.

The module does not have any module specific settings.

3.2.3.4	 Module type "Dig512"

With the "Dig512" module, you can acquire up to 512 digital values, organized as 32 status
words (type Integer) with 16 bits, each.

The module does not have any module specific settings, there are only the General and Digital
tabs.

20	 3.0	

Modbus-TCP-Server data interface	 ibaPDA-Interface-Modbus-TCP-Server

3.2.3.5	 Module type "Real"

The "Real" module allows up to 32 analog signals (Real) and 32 binary signals to be acquired.

The following module settings are module-specific:

■	 No. analog signals
 You can set up the number of analog signals to be measured (1 to 32).
Please, consider the following:
In case you want to use digital signals, the message must have the structure described in
ì Modbus Real, page 13. If you do not use digital signals, the message can be shortened.

■	 In the analog table, Gain/Offset are scaled.

3.2.3.6	 Module type "Generic"

Any data block with a max. length of 244 bytes can be measured by means of the module "Ge-
neric".

The following module settings are module-specific:

■	 Swap analog signals, swap digital signals
 You can change the byte evaluation order. (The interface settings are not valid here!)

■	 No. analog signals, No. digital signals
 Maximum number of analog and digital signals that can be configured.

■	 In the analog table, Gain/Offset are scaled.

■	 For each variable, you have to enter the address, i.e. the offset in the telegram buffer and the
data type. Bear in mind that counting starts from the beginning of user data without header.

Note

The module Modbus Generic supports the acquisition and processing of strings
as text signals. Therefore, you can select the datatype STRING[32] in the Analog
tab. In order to convert a text signal oder to split it up into several text signals
use the text splitter module under the Virtual interface.

Description of the columns:
Name, Unit , Gain, Offset, Active
see ibaPDA manual

Address
The address defines the byte offset of the value within the user data of the telegram and de-
pends on the data type of the preceding data. After changing data types, it may thus be neces-
sary to adjust the address entries.

Data Type (analog signals only)
The following data types are supported: SINT, BYTE, INT, WORD, DWORD, DINT, FLOAT, DOUBLE,
STRING[32].

	 3.0	 21

ibaPDA-Interface-Modbus-TCP-Server	 Modbus-TCP-Server data interface

Tip

Please consider, that the address depends on the data type of the preceding
data. This is why we recommend setting the data types and then the addresses
using the autofill function

3.2.4	 Module diagnostics

The tables "Analog" and "Digital" of the modules show the telegram contents.

The following errors may occur:

■	 No data are displayed:

	� The telegram buffer on the sender side is not filled correctly

	� The connectors of the send block are connected incorrectly.

■	 Incorrect values are displayed:

	� The telegram buffer on the controller side is not filled correctly (offset error)

	� The byte order is set incorrectly (see ì General module settings, page 18)

	� There are multiple modules with the same module index.

■	 The digital signals are sorted incorrectly:

	� The byte order is set incorrectly (see ì General module settings, page 18)

■	 The telegrams do not arrive faster than approx. 200 ms with sequence error:

	� Problem with “Delayed Acknowledge”, see ì TCP performance problems caused by Delay-
ed Acknowledge, page 32

	� Problem caused by "Nagle's Algorithm", see ì TCP data corruption resulting from the Nag-
le’s Algorithm, page 34

2222	 3.0	

Diagnostics	 ibaPDA-Interface-Modbus-TCP-Server

4	 Diagnostics

4.1	 License
If the interface is not displayed in the signal tree, you can either check in ibaPDA in the I/O Man-
ager under General – Settings or in the ibaPDA service status application whether your license
for this interface has been properly recognized. The number of licensed connections is shown in
brackets.

The figure below shows the license for the Codesys Xplorer interface as an example.

4.2	 Visibility of the interface
If the interface is not visible despite a valid license, it may be hidden.

Check the settings in the General tab in the Interfaces node.

Visibility
The table Visibility lists all the interfaces that are available either through licenses or installed
cards. These interfaces can also be viewed in the interface tree.

You can hide or display the interfaces not required in the interface tree by using the checkbox in
the Visible column.

Interfaces with configured modules are highlighted in green and cannot be hidden.

Selected interfaces are visible, the others are hidden:

	 3.0	 23

ibaPDA-Interface-Modbus-TCP-Server	 Diagnostics

4.3	 Log files
If connections to target platforms or clients have been established, all connection-specific ac-
tions are logged in a text file. You can open this (current) file and, e.g., scan it for indications of
possible connection problems.

You can open the log file via the button <Open log file>. The button is available in the I/O Man-
ager:

■	 for many interfaces in the respective interface overview

■	 for integrated servers (e.g. OPC UA server) in the Diagnostics tab.

In the file system on the hard drive, you can find the log files of the ibaPDA server (…\Pro-
gramData\iba\ibaPDA\Log). The file names of the log files include the name or abbrevia-
tion of the interface type.

Files named interface.txt are always the current log files. Files named Interface_
yyyy_mm_dd_hh_mm_ss.txt are archived log files.

Examples:

■	 ethernetipLog.txt (log of EtherNet/IP connections)

■	 AbEthLog.txt (log of Allen-Bradley Ethernet connections)

■	 OpcUAServerLog.txt (log of OPC UA server connections)

24	 3.0	

Diagnostics	 ibaPDA-Interface-Modbus-TCP-Server

4.4	 Connection diagnostics with PING
PING is a system command with which you can check if a certain communication partner can be
reached in an IP network.

1.	 Open a Windows command prompt.

2.	 Enter the command "ping" followed by the IP address of the communication partner and
press <ENTER>.

→	 With an existing connection you receive several replies.

→	 With no existing connection you receive error messages.

	 3.0	 25

ibaPDA-Interface-Modbus-TCP-Server	 Diagnostics

4.5	 Checking the connection
If you mark the data interface "Modbus TCP Server" in the signal tree of the I/O manager, you
will see a table in the right part of the window which shows all available connections of this in-
terface.

Buttons:

Allow ports through firewall
When installing ibaPDA, the default port numbers of the used protocols are automatically en-
tered in the firewall. If you change the port number or enable the interface subsequently, you
have to enable this port in the firewall with this button.

<Reset statistics>
Click this button to reset the calculated times and error counters in the table to 0.

The list of connections shows the following values:

■	 Address: Address of the Modbus server

■	 Module index: "Starting address" field from the telegram header.

■	 Message ounter: Number of messages received

■	 Incomplete errors: Is incremented each time the length of the telegram does not equal the
length defined in the telegram header.

■	 Sequence errors: Is incremented each time, the counter in the "Transaction Id." field of the
header is not incremented each cycle by 1.

■	 Packet size Actual: The complete telegram length

■	 Time Actual: Cycle in which the telegrams of the Modbus client arrive

26	 3.0	

Diagnostics	 ibaPDA-Interface-Modbus-TCP-Server

Colors:

■	 Green: Connection OK. the "Time Actual" approximately corresponds to the timebase of the
module

■	 Orange: The connection is OK, the timebase of the module is much faster than "Time Actual".
The timebase of the module can be adapted for optimizing purposes.

A failed connection may have the following causes:

■	 Modbus client is in stop

■	 No Ethernet connection between ibaPDA PC and the Modbus PLC

■	 Error in the connection configuration:

	� incorrect remote IP address

	� The ibaPDA port number and the connection configuration do not match.

Other errors:

■	 If values in the columns "Incomplete errors" and/or "Sequence errors" are incremented, this
points to one of the following errors:

	� Error in the message header

	� Error in the byte order

	� The "delayed acknowledge" problem occurs, see ì TCP performance problems caused by
Delayed Acknowledge, page 32

	 3.0	 27

ibaPDA-Interface-Modbus-TCP-Server	 Diagnostics

4.6	 Diagnostic modules
Diagnostic modules are available for most Ethernet based interfaces and Xplorer interfaces. Us-
ing a diagnostic module, information from the diagnostic displays (e.g. diagnostic tabs and con-
nection tables of an interface) can be acquired as signals.

A diagnostic module is always assigned to a data acquisition module of the same interface and
supplies its connection information. By using a diagnostic module you can record and analyze
the diagnostic information continuously in the ibaPDA system.

Diagnostic modules do not consume any license connections because they do not establish
their own connection, but refer to another module.

Example for the use of diagnostic modules:

■	 A notification can be generated, whenever the error counter of a communication connection
exceeds a certain value or the connection gets lost.

■	 In case of a disturbance, the current response times in the telegram traffic may be docu-
mented in an incident report.

■	 The connection status can be visualized in ibaQPanel.

■	 You can forward diagnostic information via the SNMP server integrated in ibaPDA or via OPC
DA/UA server to superordinate monitoring systems like network management tools.

In case the diagnostic module is available for an interface, a "Diagnostics" module type is shown
in the "Add module" dialog (example: Generic TCP).

Module settings diagnostic module
For a diagnostic module, you can make the following settings (example: Generic TCP):

28	 3.0	

Diagnostics	 ibaPDA-Interface-Modbus-TCP-Server

The basic settings of a diagnostic module equal those of other modules.

There is only one setting which is specific for the diagnostic module: the target module.

By selecting the target module, you assign the diagnostic module to the module on which you
want to acquire information about the connection. You can select the supported modules of this
interface in the drop down list of the setting. You can assign exactly one data acquisition module
to each diagnostic module. When having selected a module, the available diagnostic signals are
immediately added to the Analog and Digital tabs. It depends on the type of interface, which
signals exactly are added. The following example lists the analog values of a diagnostic module
for a Generic TCP module.

For example, the IP (v4) address of a Generic TCP module (see fig. above) will always be split
into 4 parts derived from the dot-decimal notation, for better reading. Also other values are
being determined, as there are port number, counters for telegrams and errors, data sizes and
telegram cycle times. The following example lists the digital values of a diagnostic module for a
Generic TCP module.

	 3.0	 29

ibaPDA-Interface-Modbus-TCP-Server	 Diagnostics

Diagnostic signals
Depending on the interface type, the following signals are available:

Signal name Description
Active Only relevant for redundant connections. Active means that

the connection is used to measure data, i.e. for redundant
standby connections the value is 0.
For normal/non-redundant connections, the value is always 1.

Buffer file size (actual/avg/
max)

Size of the file for buffering statements

Buffer memory size (actual/
avg/max)

Size of the memory used by buffered statements

Buffered statements Number of unprocessed statements in the buffer
Buffered statements lost Number of buffered but unprocessed and lost statements
Connected Connection is established
Connected (in) A valid data connection for the reception (in) is available
Connected (out) A valid data connection for sending (out) is available
Connecting Connection being established
Connection attempts (in) Number of attempts to establish the receive connection (in)
Connection attempts (out) Number of attempts to establish the send connection (out)
Connection ID O->T ID of the connection for output data (from the target system

to ibaPDA). Corresponds to the assembly instance number
Connection ID T->O ID of the connection for input data (from ibaPDA to target sys-

tem). Corresponds to the assembly instance number
Connection phase (in) Status of the ibaNet-E data connection for reception (in)
Connection phase (out) Status of the ibaNet-E data connection for sending (out)
Connections established (in) Number of currently valid data connections for reception (in)
Connections established (out) Number of currently valid data connections for sending (out)
Data length Length of the data message in bytes
Data length O->T Size of the output message in byte
Data length T->O Size of the input message in byte
Destination IP address (part
1-4) O->T

4 octets of the IP address of the target system Output data
(from target system to ibaPDA)

Destination IP address (part
1-4) T->O

4 octets of the IP address of the target system Input data
(from ibaPDA to target system)

Disconnects (in) Number of currently interrupted data connections for recep-
tion (in)

Disconnects (out) Number of currently interrupted data connections for sending
(out)

Error counter Communication error counter
Exchange ID ID of the data exchange
Incomplete errors Number of incomplete messages

30	 3.0	

Diagnostics	 ibaPDA-Interface-Modbus-TCP-Server

Signal name Description
Incorrect message type Number of received messages with wrong message type
Input data length Length of data messages with input signals in bytes (ibaPDA

receives)
Invalid packet Invalid data packet detected
IP address (part 1-4) 4 octets of the IP address of the target system
Keepalive counter Number of KeepAlive messages received by the OPC UA Serv-

er
Lost images Number of lost images (in) that were not received even after a

retransmission
Lost Profiles Number of incomplete/incorrect profiles
Message counter Number of messages received
Messages per cycle Number of messages in the cycle of the update time
Messages received since con-
figuration

Number of received data telegrams (in) since start of acquisi-
tion

Messages received since con-
nection start

Number of received data telegrams (in) since the start of the
last connection setup. Reset with each connection loss.

Messages sent since configu-
ration

Number of sent data telegrams (out) since start of acquisition

Messages sent since connec-
tion start

Number of sent data telegrams (out) since the start of the last
connection setup. Reset with each connection loss.

Multicast join error Number of multicast login errors
Number of request com-
mands

Counter for request messages from ibaPDA to the PLC/CPU

Output data length Length of the data messages with output signals in bytes
(ibaPDA sends)

Packet size (actual) Size of the currently received message
Packet size (max) Size of the largest received message
Ping time (actual) Response time for a ping telegram
Port Port number for communication
Producer ID (part 1-4) Producer ID as 4 byte unsigned integer
Profile Count Number of completely recorded profiles
Read counter Number of read accesses/data requests
Receive counter Number of messages received
Response time (actual/aver-
age/max/min)

Response time is the time between measured value request
from ibaPDA and response from the PLC or reception of the
data.

Actual: current value

Average/max/min: static values of the update time since the
last start of the acquisition or reset of the counters.

Retransmission requests Number of data messages requested again if lost or delayed

	 3.0	 31

ibaPDA-Interface-Modbus-TCP-Server	 Diagnostics

Signal name Description
Rows (last) Number of resulting rows by the last SQL query (within the

configured range of result rows)
Rows (maximum) Maximum number of resulting rows by any SQL query since

the last start of acquisition (possible maximum equals the
configured number of result rows)

Send counter Number of send messages
Sequence errors Number of sequence errors
Source IP address (part 1-4)
O->T

4 octets of the IP address of the target system Output data
(from target system to ibaPDA)

Source IP address (part 1-4)
T->O

4 octets of the IP address of the target system Input data
(from ibaPDA to target system)

Statements processed Number of executed statements since last start of acquisition
Synchronization Device is synchronized for isochronous acquisition
Time between data (actual/
max/min)

Time between two correctly received messages

Actual: between the last two messages

Max/min: statistical values since start of acquisition or reset of
counters

Time offset (actual) Measured time difference of synchronicity between ibaPDA
and the ibaNet-E device

Topics Defined Number of defined topics
Topics Updated Number of updated topics
Unknown sensor Number of unknown sensors
Update time (actual/average/
configured/max/min)

Specifies the update time in which the data is to be retrieved
from the PLC, the CPU or from the server (configured). De-
fault is equal to the parameter "Timebase". During the mea-
surement the real actual update time (actual) can be higher
than the set value, if the PLC needs more time to transfer the
data. How fast the data is really updated, you can check in
the connection table. The minimum achievable update time
is influenced by the number of signals. The more signals are
acquired, the greater the update time becomes.

Average/max/min: static values of the update time since the
last start of the acquisition or reset of the counters.

Write counter Number of successful write accesses
Write lost counter Number of failed write accesses

3232	 3.0	

Appendix	 ibaPDA-Interface-Modbus-TCP-Server

5	 Appendix

5.1	 Troubleshooting

5.1.1	 TCP performance problems caused by Delayed Acknowledge

Symptoms:
ibaPDA measurements of automation devices using TCP/IP sometimes do not work with cycle
times < 200 ms.

Errors shown in ibaPDA:
Incomplete telegrams and/or spikes in data values (depending on the sending controller type)

Cause:
There are different variants of handling "acknowledge" in the TCP/IP protocol:

The standard WinSocket works in accordance with RFC1122 using the "delayed acknowledge"
mechanism (Delayed ACK). It specifies that the "acknowledge" is delayed until other telegrams
arrive in order to acknowledge them jointly. If no other telegrams arrive, the ACK telegram is
sent after 200 ms at the latest (depending on the socket).

The data flow is controlled by a "sliding window" (parameter Win=nnnn). The recipient specifies
how many bytes it can receive without sending an acknowledgment.

Some controllers do not accept this response, but instead, wait for an acknowledgment after
each data telegram. If it does not arrive within a certain period of time (200 ms), it will repeat
the telegram and include any new data to be sent, causing an error with the recipient, because
the old one was received correctly.

Remedy:
The "delayed acknowledge" can be switched off individually for each network adapter via an
entry in the Windows Registry. For easy modification, ibaPDA offers a corresponding dialog in
the I/O manager under General in the tab Settings.

In the list of network adapters, select those for which you want to disable “delayed acknowl-
edge” and click <Apply>.

	 3.0	 33

ibaPDA-Interface-Modbus-TCP-Server	 Appendix

Thus, the parameter "TcpAckFrequency" (REG_DWORD = 1) is created in the registry path of the
selected network adapters:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\
{InterfaceGUID}

Note

Basically, you can avoid such TCP-specific problems by using UDP instead of TCP.

The User Datagram Protocol (UDP) is a minimal network protocol that is not con-
nection-oriented and is unsecured against telegram loss. Among other things,
reception acknowledgement of the sent data is dispensed with. In stable and
high-performance networks, however, this is not of significant importance and
can be neglected due to the cyclic data transmission common with ibaPDA.

34	 3.0	

Appendix	 ibaPDA-Interface-Modbus-TCP-Server

5.1.2	 TCP data corruption resulting from the Nagle’s Algorithm

Symptoms:
ibaPDA measurements of automation devices using TCP/IP show spikes in the data.

Errors shown in ibaPDA:
Incomplete telegrams and/or spikes in the data values (see examples in the following figures)

Cause:
Nagle's algorithm, named after its creator John Nagle, is one mechanism for improving TCP ef-
ficiency by reducing the number of small packets sent over the network and collecting several
data blocks before sending the data over the network.

Since the Generic TCP interface does not use an application level protocol, the receiver ibaPDA
cannot handle these merged messages correctly. The Generic TCP interface expects only 1 data-
gram per TCP message with always the same layout and length.

But the Nagle's Algorithm and the option Delayed ACK (Delayed Acknowledge, see 5.1.1,
page 32) do not play well together in a TCP/IP Network:

The Delayed ACK mechanism tries to send more data per segment if it can.

But part of Nagle's algorithm depends on an ACK to send data.

Nagle's algorithm and Delayed ACKs together create a problem because Delayed ACKs are wait-
ing around to send the ACK while “Nagle's” is waiting around to receive the ACK!

	 3.0	 35

ibaPDA-Interface-Modbus-TCP-Server	 Appendix

This creates random stalls of 200 ms - 500 ms on segments that could otherwise be sent imme-
diately and delivered to the receive-side stack of ibaPDA as application.

Remedy:
We recommend starting with disabling the Delayed ACK mechanism as explained in chapter
5.1.1, page 32. In a typical real-time application, the transmitter will then send the new data
to ibaPDA with a certain cycle time, since the previous data has been acknowledged immediate-
ly. Depending on the implementation of the TCP/IP stack on the sender's side, the Nagle's algo-
rithm can still become active and automatically aggregate a number of small buffer messages,
causing the algorithm to purposely slow down the transmission.

This can also happen sporadically due to a momentary overload on the sender side that causes
the stack to merge some messages.

To disable Nagle's buffering algorithm, use the TCP_NODELAY socket option. The TCP_NODELAY
socket option allows the network to bypass Nagle's-induced Delays by disabling Nagle's algo-
rithm, and sending the data as soon as it is available.

Enabling TCP_NODELAY forces a socket to send the data in its buffer, whatever the packet size.
The TCP_NODELAY flag is an option that can be enabled on a per-socket basis and is applied
when a TCP socket is created.

(See Socket.NoDelay property in .NET applications in the System.Net.Sockets namespace.)

Note

Basically, you can avoid such TCP-specific problems by using UDP instead of TCP.

The User Datagram Protocol (UDP) is a minimal network protocol that is not con-
nection-oriented and is unsecured against telegram loss. Among other things,
reception acknowledgement of the sent data is dispensed with. In stable and
high-performance networks, however, this is not of significant importance and
can be neglected due to the cyclic data transmission common with ibaPDA.

36	 3.0	

Appendix	 ibaPDA-Interface-Modbus-TCP-Server

5.2	 Engineering examples

5.2.1	 Engineering example Modicon Quantum

5.2.1.1	 Configuration of the TCP/IP Interface in ProWORX NxT

1.	 Install your Ethernet Module (NOE).

2.	 Configure your IP address for the NOE (next figure).

3.	 Make a new ladder or ConCept program placing a MSTR block configured as shown in the
next figure.

	 3.0	 37

ibaPDA-Interface-Modbus-TCP-Server	 Appendix

■	 MSTR operation Code:
 1 Decimal; stands for a write command

■	 Error Status:
 0 hex; stands for possible communication errors

■	 # of Registers:
 34 Decimal; this stands for the 34 registers to be sent to ibaPDA (32 analog + 32 digital val-
ues). In case you use the MODBUS_FLOAT (or MODBUS Real) module type, 66 registers have
to be sent. When a Modbus Generic module type is used, a maximum of 122 registers can be
sent.

Note

Entering a number other than 34 or 66 (with Int, Dig512 and Float) will display
errors both in ibaPDA and the MSTR block, without any communication at all.

■	 Func. Dependant Info:
 1 Decimal; this stands for ibaPDA module number 1. Use different numbers for different
ibaPDA module numbers. Add 100 when a MODBUS_FLOAT module is used and 200 when a
MODBUS_Generic module is used.

38	 3.0	

Appendix	 ibaPDA-Interface-Modbus-TCP-Server

■	 MB+Routing A1:
In the example shown here, the NOE was installed in slot number 4. The actual number
entered in this field is 0x400 whereas “4” represents the slot number (Decimal = 1024). For
a NOE with slot number 5, the field will be 0x500, which equates to a decimal entry of 1280.
This screenshot is taken from ProWORX NxT.

■	 MB+Routing A2..A5:
Stands for IP address 143.1.2.48; this should be the IP address of ibaPDA.

5.2.1.2	 Ladder Program for the PLC

There are two ways to program the PLC:

If ibaPDA doesn’t send an acknowledge answer
■	 Advantage:

Faster communication, there is less throughput in the LAN

■	 Disadvantage:
Doesn’t work with NOE series 700
If set too fast, sometimes it can freeze the PLC

ibaPDA sends an acknowledge answer
■	 Advantage:

Support of NOE series 700

■	 Disadvantage:
Slower communication

For option 2 please select the “Send response to modbus master” option in the general settings
of Modbus TCP Server, see ì General interface settings, page 16. If option 1 is preferable sim-
ply de-select it.

	 3.0	 39

ibaPDA-Interface-Modbus-TCP-Server	 Appendix

5.2.1.2.1	 ibaPDA doesn't send an acknowledge answer (example)

Complete the program as shown in the figure below (example: Ladder program in ProWORX
NxT).

T.01 is the timer generating pulses, in this case every 10 milliseconds.

Notice that the marked switch “P 001000” in the red square is the pulse output generated by
T.01

Notice also that ibaPDA does not send a response back to the PLC so the MSTR block is sending
registers every 10ms even if errors occur or there is no response. Do not expect response from
the communication.

When the PLC is restarted the MSTR block should establish the communication with ibaPDA.
You should be able to see the connection status in ibaPDA Diagnostics for Modbus. Look for a
few minutes what happens with the connection. If the connection is held for more than approx.
2 minutes, it should be working fine.

Note

One (1) sequence error displayed is ok. This is shown as the first intent to com-
municate with ibaPDA.

Every time the MSTR block sends data, the message counter is incremented in the connection
overview (I/O manager ibaPDA), for the available active connection.

It is recommended to test live data with an up-counter which should be configured to write data
into the first register sent by the MSTR block.

40	 3.0	

Appendix	 ibaPDA-Interface-Modbus-TCP-Server

For more than 32 analog and 32 digital values, follow the MSTR block configuration procedure
as explained but change the Func. Dependant Info (ibaPDA module number).

In ibaPDA add Modbus Server modules as required.

5.2.1.2.2	 ibaPDA sends an acknowledge answer (example)

Complete the program as shown in the figure below (example: Ladder-Programm in ProWORX
NxT).

Notice that this time there is no timer that enables the MSTR block to write. Instead, after each
successful transaction, ibaPDA sends an ACK answer back which returns a SUCCESSFUL output
and prepares the MSTR block to be ready for the next one.

5.2.1.3	 ConCept Program for the PLC

Basically the steps of configuration in ConCept are the same as described in the preceding sec-
tions.

In ConCept, the parameter names of the MSTR block differ.

ProWORX NxT ConCept
MSTR operation Code w1
Error Status w2
of Registers w3

	 3.0	 41

ibaPDA-Interface-Modbus-TCP-Server	 Appendix

ProWORX NxT ConCept
Func. Dependant Info w4
MB+Routing A1 w5
MB+Routing A2 w6
MB+Routing A3 w7
MB+Routing A4 w8
MB+Routing A5 w9

Example for ConCept Configuration and Program

A more detailed description of the configuration and programming in ConCept is being pre-
pared.

ConCept Program with MSTR block:

42	 3.0	

Appendix	 ibaPDA-Interface-Modbus-TCP-Server

ConCept RDE table:

5.2.1.4	 Unity Pro XL Program for the PLC (Generic module sample)

1.	 Install your Ethernet module.

2.	 Configure the IP addresses of the Ethernet module.
The Ethernet module can be found in the project browser under
Station\Communication\networks\

	 3.0	 43

ibaPDA-Interface-Modbus-TCP-Server	 Appendix

3.	 Create a new ladder (LAD) or structure text (ST) program. A new program can be added un-
der Station\Program\Tasks\MAST\Sections (example: ST program in Unity Pro XI):

To send a message via MODBUS TCP/IP, the WRITE_VAR function is used. This function needs a
few parameters like the IP address, variable type, module number, amount of registers, etc.

44	 3.0	

Appendix	 ibaPDA-Interface-Modbus-TCP-Server

The IP addresses are represented by the ADDR_IBA variable. This variable is the XWAY address
configured in the Ethernet module. For each module a different IP address is necessary. Thus for
3 modules, 3 addresses need to be configured.

In the example different variables were created to preserve a clear overview of the program.
The module numbers are set to 200, 201 and 202 because we want to send Generic modules
towards ibaPDA. Each module contains floats, integers and Booleans with a length of 120 regis-
ters in total.

5.2.2	 Engineering example in PL7 Pro

5.2.2.1	 Network configuration

In the hardware configuration of the ETY (network) card, an XWAY address needs to be created
in order to be able to send the data to ibaPDA via the MODBUS protocol.

As shown in the table “Connection configuration” above (example: Network configuration in PL7
Pro), the XWAY consists of:

■	 XWAY Address: This address will be used in the program as “gateway”.

■	 IP address: Here the IP address of the ibaPDA data acquisition system needs to be filled in.

■	 Protocol: The MODBUS protocol should be selected to send messages via MODBUS.

■	 Access: This needs to be selected

■	 Mode: Multimode is required.

	 3.0	 45

ibaPDA-Interface-Modbus-TCP-Server	 Appendix

After finishing these settings and the IP address configuration of the card itself, you need to vali-
date (confirm) the configuration.

5.2.2.2	 Message configuration (example)

Create a program in the "Mast" task section (example: Program in PL7 Pro).

The message needs to be sent cyclically towards ibaPDA. Therefore, a system variable “%S5” is
used. This system variable is a toggling digital signal with a 100 ms period. On the rising edge of
the digital signal, the message will be sent towards ibaPDA (network 3).

The WRITE_VAR operation (1) is used to send the data towards ibaPDA. This operation uses the
following settings:

WRITE_VAR(ADR#2.115SYS,’%MW’,0,34,%MW300:34,%MW296:4)

■	 XWAY Addr. The previous created XWAY Addr. needs to be filled in here ADR#<XWAY AddrSYS

■	 Type: Here the variable type is selected ‘%MW’

■	 Module index: Here the same module index as used in ibaPDA should be applied.

■	 Number of registers: 34 is the number of registers (words of 16 bit) which will be sent to-
wards ibaPDA.

■	 Start address: The address %MW300 to %MW334 will be sent

■	 Management words: These words contain the status, send settings, etc.

46	 3.0	

Appendix	 ibaPDA-Interface-Modbus-TCP-Server

The operation (2) where the word %MW298 is set towards 50 is used to set the timeout of the
WRITE_VAR function.

Value MW269:X0 (3)shows if the variable has been sent or not.

The timer (%TM70) is used to prevent that the message doesn’t take more than 1 minute (nor-
mally set to for example 100 ms) to be sent towards the ibaPDA system.

As a result a table will be created consisting of signals which are linked to the configured ad-
dresses and which will be copied into the signal table of ibaPDA. This table can be found below
the timer.

47	 3.0	 47

ibaPDA-Interface-Modbus-TCP-Server	 Support and contact

6	 Support and contact
Support

Phone: +49 911 97282-14

Fax: +49 911 97282-33

Email: support@iba-ag.com

Note

If you need support for software products, please state the number of the licen-
se container. For hardware products, please have the serial number of the device
ready.

Contact

Headquarters

iba AG
Koenigswarterstrasse 44
90762 Fuerth
Germany

Phone: +49 911 97282-0

Fax: +49 911 97282-33

Email: iba@iba-ag.com

Mailing address

iba AG
Postbox 1828
D-90708 Fuerth, Germany

Delivery address

iba AG
Gebhardtstrasse 10
90762 Fuerth, Germany

Regional and Worldwide

For contact data of your regional iba office or representative
please refer to our web site:

www.iba-ag.com

	1 About this documentation
	1.1 Target group and previous knowledge
	1.2 Notations
	1.3 Used symbols

	2 System requirements
	3 Modbus-TCP-Server data interface
	3.1 General information
	3.1.1 Modbus TCP/IP
	3.1.2 Client/Server architecture
	3.1.3 Modbus protocol
	3.1.4 Modbus TCP/IP - Message layout
	3.1.4.1 Modbus Integer and Modbus Dig512
	3.1.4.2 Modbus Real
	3.1.4.3 Modbus Generic
	3.1.4.4 Response

	3.1.5 References

	3.2 Configuration and engineering ibaPDA
	3.2.1 General settings
	3.2.2 General interface settings
	3.2.3 Adding a module
	3.2.3.1 General module settings
	3.2.3.2 General signal configuration
	3.2.3.3 Module type "Integer"
	3.2.3.4 Module type "Dig512"
	3.2.3.5 Module type "Real"
	3.2.3.6 Module type "Generic"

	3.2.4 Module diagnostics

	4 Diagnostics
	4.1 License
	4.2 Visibility of the interface
	4.3 Log files
	4.4 Connection diagnostics with PING
	4.5 Checking the connection
	4.6 Diagnostic modules

	5 Appendix
	5.1 Troubleshooting
	5.1.1 TCP performance problems caused by Delayed Acknowledge
	5.1.2 TCP data corruption resulting from the Nagle’s Algorithm

	5.2 Engineering examples
	5.2.1 Engineering example Modicon Quantum
	5.2.1.1 Configuration of the TCP/IP Interface in ProWORX NxT
	5.2.1.2 Ladder Program for the PLC
	5.2.1.3 ConCept Program for the PLC
	5.2.1.4 Unity Pro XL Program for the PLC (Generic module sample)

	5.2.2 Engineering example in PL7 Pro
	5.2.2.1 Network configuration
	5.2.2.2 Message configuration (example)

	6 Support and contact

